DOI: 10.3785/j.issn.2096-7195.2022.05.002

冻融循环作用下贺兰山遗址区岩石损伤特征研究

杨有贞^{1,2},林青青¹,冯海燕¹,赵诣深¹,马文国^{1,2} (1. 宁夏大学物理与电子电气工程学院,宁夏银川 750021;2. 宁夏大学 固体力学研究所,宁夏银川 750021)

摘 要:针对宁夏环境致贺兰山遗址区岩石风化严重的问题,首先对取自贺兰山遗址区的岩样进行冻融循环试验,设置循环次数分别为0、10、20、30、40次,测量岩样的质量、纵波波速及有效孔隙率,并分析冻融循环次数对它们的影响;然后开展单轴压缩和声发射试验,绘制应力-应变曲线,分析其变化规律;最后基于弹性模量与累积振铃计数,定义损伤变量,建立温度-水-力三场耦合作用下的损伤本构模型。研究结果表明,有效孔隙率和波速降低比率在20次循环周期后均有所下降,此时岩样出现颗粒剥落现象,二者的变化能够反映岩石表面损伤情况;损伤变量经历了平稳阶段、缓慢增加阶段和陡然上升阶段,对应于应力-应变的变化规律;构建的损伤本构模型能够描述贺兰山岩石的损伤演化过程,为进一步认识贺兰山遗址岩石的病害机理提供了理论依据。
 关键词:冻融循环;单轴压缩;声发射;三场耦合;损伤特征;贺兰山遗址区
 中图分类号:TU45
 文献标识码:A
 文章编号: 2096–7195(2022)05–0372–08

Study on damage characteristics of rock in Helan Mountain site under freeze-thaw cycle treatment

YANG You-zhen^{1,2}, LIN Qing-qing¹, FENG Hai-yan¹, ZHAO Yi-shen¹, MA Wen-guo^{1,2}

School of Physics and Electronic and Electrical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China;
 Institute of Solid Mechanics, Ningxia University, Yinchuan 750021, Ningxia, China)

Abstract: In view of the serious weathering of rocks in the Helan Mountain site area caused by Ningxia environment, firstly, the freeze-thaw cycle tests were carried out on the rock samples taken from the Helan Mountain site, and the cycle times were set as 0, 10, 20, 30 and 40 times respectively. The mass, longitudinal wave velocity and effective porosity of the rock samples were measured, and the influence of the cycles on them was investigated. Then, uniaxial compression tests and acoustic emission tests were performed; the stress-strain curves were obtained, and their variation laws were analyzed. Finally, the damage variable was defined, based on the elastic modulus and cumulative ringing count, and the damage constitutive model under the coupling action of temperature-water-force was established. The study results show that the effective porosity and the reduction ratio of wave velocity decrease after 20 cycles. At this time, the particle spalling phenomenon occurs in rock samples, and the changes of two indexes can reflect the damage of rock surface. The damage variable has experienced a steady stage, a slowly increasing stage and a steep rising stage, which corresponds to the change law of stress-strain. The constructed damage constitutive model can describe the damage evolution process of rocks in the Helan Mountain, which provides a theoretical basis for further understanding the disease mechanism of rocks in the Helan Mountain site.

Key words: freeze thaw cycle; uniaxial compression; acoustic emission; three field coupling; damage characteristics; the Helan Mountain Site area

0 引 言

贺兰山是宁夏和内蒙古的分界线,山体狭长呈

西南东北走向,长约250km,宽15~50km,属于 干旱大陆季风气候。贺兰山遗址区位于贺兰山东 麓,该区温度最高可达37℃,最低气温约为

作者简介:杨有贞(1979—),女,宁夏银川人,博士,副教授,主要研究方向为环境岩土工程。E-mail:hemai@163.com。

收稿日期: 2022-04-28

基金项目: 宁夏自然科学基金(022204050013); 国家自然科学基金项目(11662015; 51768059)。

-22.5 ℃^[1],早晚温差大,加之地势地貌特殊,贺兰 山体间充满大量的岩隙水^[2],水分渗入岩石内部, 在低温条件下冻结膨胀使岩石结构破坏产生微孔 隙、微裂隙,温度升高冰霜融化,水分继续渗入新 的孔隙、裂隙,循环往复,形成冻融过程。在这种 冻融循环作用下,遗址区岩石表层出现粉化剥落、 裂隙发育等多种病害,如图1所示,造成遗址本体 表面出现了严重的损伤^[3]。因此,研究冻融循环条 件下贺兰山遗址区岩石损伤特性,对岩画的保护具 有重要意义。

(b)表层剥落图 1 贺兰山岩画表层损伤Fig. 1 Surface damage of Helan Mountain rock painting

近年来,针对岩石冻融损伤特性进行了大量研 究。在宏观方面, MOMENI 等^[4] 对不同类型的花岗 类岩石进行冻融试验,结果表明单轴抗压强度是反 映岩石冻融损伤的最佳力学参数。GHOBADI 等^[5] 通过进行冻融试验,研究了经历冻融循环后孔隙率 对岩石损伤的影响规律。张慧梅等[6]利用弹性模量 表示损伤变量,建立了冻融作用下岩石的损伤演化 方程和本构模型。贾海梁等门分析了饱和砂岩所经 历的冻融作用的特点,在疲劳损伤理论的基础上, 使用开孔孔隙率表示损伤变量,建立了砂岩在冻融 循环作用下的损伤演化方程。王天禹等[8] 对绿砂 岩、花岗岩和红砂岩3种不同岩性岩石进行了冻融 试验,结果表明岩石的孔隙率和弹性模量很大程度 上影响了冻融后岩石抗压强度的降幅。李博文等[9] 通过试验研究了隐晶质玄武岩在不同冻融循环次 数下的物理力学特性变化规律与变形破坏特点,得 到了损伤变量随冻融次数的拟合关系式。在细观层 面上,刘慧等^[10]对不同冻融循环作用下的砂岩进行 巴西劈裂实时声发射监测,基于声发射累积振铃计 数值建立了损伤变量,推演了砂岩的损伤演化过 程。张功等^[11]通过声发射技术研究了砂质泥岩在正 冻过程以及不同温度下(常温及负温)单轴试验中 的声发射特征变化,引入 Weibull 分布函数,建立 损伤变量与声发射能量参数的变化关系。刘波等^[12] 将声发射能量作为损伤变量,展示了不同温度泥岩 在劈裂试验过程中内部损伤过程。可见目前对于冻 融作用下岩石损伤变量的研究,在宏观上主要集中 于孔隙率、弹性模量、冻融循环次数等因素,细观 上主要集中于声发射累积振铃数、声发射累积能量 数等,缺乏宏观量与细观量结合起来表征岩石损伤 变量的研究。

为此,本文在前人研究的基础上,结合贺兰山 遗址区的环境特征,设置了0、10、20、30、40循 环次数的冻融试验,测量冻融试验前后岩样的质 量、纵波波速和孔隙率,分析冻融循环对于它们的 影响;开展单轴压缩试验和声发射试验,定义弹性 模量和累积振铃计数耦合作用的损伤变量,分析损 伤变量与应力-应变曲线变化的规律,构建温度-水-力三种因素耦合作用下的岩石损伤本构模型, 丰富了贺兰山遗址载体损伤机理的认识。

1 试验设计

本次试验岩样取自贺兰山遗址区内,为保证试 验结果的可靠性,所选取岩块均为无节理或裂隙的 新鲜岩块。用显微镜采用正交偏光的鉴定方法对岩 样进行岩矿鉴定分析,鉴定结果显示所取岩样为钙 质胶结不等粒长石砂岩,块状构造,主要有石英、 斜长石和钾长石、岩屑、方解石、黏土矿物、金属 矿物等组成。胶结物以方解石为主,可见少量黏土 矿物及铁质不均匀散布。方解石略均匀充填于上述 碎屑物间隙中,使岩石呈基底式胶结,部分黏土矿 物已变质为绿泥石集合体。

1.1 试样制备与筛选

试验岩样取自贺兰山遗址区内的完整岩块,按 照《工程岩体试验办法标准》^[13],将选取的岩块加 工成为直径 50 mm,高 100 mm 的标准岩样,精度 应符合下列要求:(1)试件两端面不平行度误差不 得大于 0.05 mm;(2)沿试件高度,直径的误差不 得大于 0.3 mm;(3)端面应垂直于试件轴线,偏 差不得大于 0.25°^[13]。同时对加工后的岩样利用材 料超声波检测仪进行超声波筛选,选取的岩样波速 平均值为 5 189 m·s⁻¹, 波速误差小于 2%。将 15 个 岩样分为 5 组, 每组 3 个岩样。

1.2 试验设备及方案

本次试验主要包括物理参数测试、冻融循环试验、单轴压缩声发射试验。具体试验方案如下:(1)前期工作:试验前利用游标卡尺测量岩样的直径与高度,并测量每个样品的质量。再将15个岩样全部利用抽真空饱和装置进行饱和试验,岩样放入压力为0.8 MPa的蒸馏水中抽真空30 min 后,保持压力继续真空饱水24 h,饱和完成后测得岩样的质量。

(2) 冻融设备及过程: 岩样在 TMS 9012 型冻融机 中进行冷冻。饱水后的岩样放入冻融机中,根据贺 兰山水文变化[14]并结合规范[13],将冻融循环设置 为-20℃~20℃。2h温度下降到-20℃,保温4h, 2 h 温度升到 20 ℃, 保温 4 h, 一个循环为 12 h。 循环次数为0、10、20、30、40次。并对冻融循环 结束后的试样分别进行波速、质量的测量。(3)单 轴压缩设备及过程: 试验采用 TFD-1000 微机控制 岩石多场耦合仪。试验开始前先使压头与岩样接 触,当加载至目标值后,开始加载轴向载荷,加载 方式为位移加载,速率为0.002 mm/s,采集岩石的 全过程应力-应变曲线。(4)声发射设备及过程: 试验采用美国物理声学公司(PAC)的声发射系统 和 AE win 声发射信号数据采集软件。声发射系统 设置门槛值为 40 db, 采样时间间隔 0.1 s, 确保数 据采集密集提高试验精度。

2 试验结果及分析

2.1 岩样质量变化

岩样质量是物理基本参数之一。制样过程中不 易保证每个岩样质量一致,为保证更精准反映冻融 作用对岩样质量的影响,定义质量损失率为:

$$S = \frac{M_0 - M_n}{M_0} \times 100\%$$
 (1)

式中: M_0 为岩样的初始质量,kg; M_n 为一定循环次数下岩样质量,kg,n=0,10,20,30,40。

图 2 给出了质量损失率与循环次数的关系。

由图 2 可知, 岩样在 10 次循环后出现了质量 损失, 损失率为 0.018%, 质量损失较小; 30 次与 40 次循环结束后, 质量的损失率分别为 0.038%和 0.057%, 每循环增加 10 次, 质量损失率增长 0.019%。说明冻融岩样的质量损失率随着循环次数 的增加而增长, 主要原因为温度-水周期性作用使 碎屑颗粒之间失去联结造成重力解体, 造成岩石颗 粒脱落,作用时间越长颗粒剥离越厉害,如图3所示,冻融机底部出现大量粉末状剥落颗粒。

图 2 质量损失率与循环次数的关系曲线

(a) 容器内部

(b)剥落颗粒

图 3 容器底部堆积的剥落颗粒

2.2 有效孔隙率变化

为进一步探究岩石内部连通性,引入有效孔隙 率,其计算公式为:

$$n_{\rm s} = \frac{\rho_{n\rm d}}{\rho_{\rm w}} \times \frac{M_{n3} - M_{n2}}{M_{n2}} \tag{2}$$

式中: $\rho_{\rm w}$ 为水的密度; ρ_{nd} 、 M_{n2} 、 M_{n3} 为岩样干密度、干质量以及饱水质量,n=0,10,20,30,40。

图 4 给出有效孔隙率与冻融循环次数的关系。

Fig. 4 Changes of effective porosity of rock samples after different cycles

由图 4 可知,有效孔隙率在前 10 个和 20 个循 环次数内呈上升趋势,上升率分别为 0.345%与 0.459%,后者增加更为明显,达到峰值。而 30 个循 环周期过后有效孔隙率较 20 个循环周期下降了 0.328%,之后有效孔隙率趋于稳定,这是因为温度 与水的周期作用使岩样出现颗粒剥落,有效孔隙率 的增大与质量损失带来的孔隙率的减小趋于一致。 2.3 波速变化

纵波波速综合反映岩石物理力学特性,定义波 速变化率为:

$$R_{\rm p} = \frac{v_0 - v_n}{v_0} \times 100\% \tag{3}$$

式中: R_p 为波速变化率: v_0 为岩样初始波速: v_n 为 n次冻融循环后岩样波速, n=0, 10, 20, 30, 40。

图 5 给出了波速变化率与循环次数的关系。由 图 5 可得,冻融循环次数增加时,岩样波速持续下 降。冻融循环试验结束后,10,20,30,40次的波 速分别降低了 2.18%,7.07%,1.01%,3.38%。20次 循环周期结束后波速降低比达到最大,之后降幅减 小,主要原因为温度与水的耦合作用使岩样颗粒之 间联结作用减弱,岩样出现剥落现象,有效孔隙率 增加,纵波在岩样内部传播时间增加,导致波速大 幅度降低。但随着循环周期的增加,岩样表面颗粒 脱落造成了孔隙、裂隙的损失,质量的减少与有效 孔隙率的增加达到平衡,故后者趋于稳定,波速变 化率减小。

Fig. 5 Ratio of wave velocity decrease after different cycles

2.4 弹性模量变化

弹性模量的大小可以反映岩石的整体强度。本 文使用切线法计算弹性模量,图6给出了弹性模量 与循环次数的关系。从图6中可知,弹性模量随冻 融循环次数的增加而逐渐减少。与冻融前相比,10、 20、30、40次循环后分别减少了4.71%、12.22%、 15.53%和18.54%。 岩石的抗压强度可以用峰值应力来表示。图 7 为峰值应力随循环次数的变化关系。从图中可知, 峰值应力随循环次数的增加不断减小,与上一次目 标循环相比,10、20、30 和 40 次循环分别降低了 3.99%、10.45%、10.64%和 14.51%。

弹性模量和峰值应力随冻融循环的变化说明 冻融作用会导致岩石整体强度大幅下降,这是由于冻 融过程中,水与温度共同作用导致岩样内部孔隙及裂 隙不断扩展,从而降低了遗址区岩石的原有强度。

3 冻融损伤岩石损伤本构模型

3.1 声发射累计振铃计数

材料在变形或断裂过程中,以弹性波的形式释 放出应变能的现象,称为声发射。声发射累计振铃 计数可以反映在单轴压缩过程中岩样内部细观结 构的变化情况。图8给出了不同冻融周期下单轴压 缩应力和声发射计数随时间变化的曲线。由图8可 知,声发射计数变化主要分为4个阶段:(1)计数 初始增长阶段:岩样本身存在的微孔隙、微裂隙受 到载荷作用开始闭合,此时声发射计数活跃性低。

(2) 计数稳定增长阶段: 随着载荷不断增加, 岩样 内部开始出现裂纹,声发射计数表现为稳定活跃。 该阶段对应岩样弹性变形阶段。(3)计数快速增长 阶段: 岩样内部裂纹和孔隙不断发育, 出现较大的 裂纹和孔隙,此时声发射计数快速增加,该阶段对 应岩样单轴压缩曲线中的塑性变形阶段。(4)计数 剧烈增长阶段: 岩样持续受到载荷作用, 达到峰值 应力后失稳破坏,此时声发射计数剧烈增加,该阶 段对应岩样单轴压缩破坏曲线中的破坏阶段。

180

160

140

120

100

80

60

40

100

轴向应力/MPa

3.2 损伤变量

选取弹性模量的变化作为冻融循环损伤变量 D_n为:

$$E_{n} = E_{0}(1 - D_{n}) \tag{4}$$

$$D_n = 1 - \frac{E_n}{E_0} \tag{5}$$

式中: E₀为冻融循环前岩样的弹性模量; E_n为冻 融循环n次后岩样的弹性模量。

选取声发射累计振铃计数并考虑临界损伤变

图 8 不同冻融次数下单轴压缩应力和声发射计数随时间变化的曲线

Fig. 8 Curves of uniaxial compressive stress and acoustic emission count with time in different freeze-thaw (F-T) cycles

200

180

160

140

120

100

80

60

40

应力/MPa

n=10

应力-应变曲线

损伤变量

量^[6],定义损伤变量D为:

200 n=0

180

160

140

120

100

80

60

40

应力/MPa

$$D = (1 - \frac{\sigma_n}{\sigma_m}) \frac{C_d}{C}$$
(6)

0.048

0.040

0.032

0.024 Û

0.016

₿

式中: C为岩石内部颗粒完全破裂时产生的声发射 累计振铃计数; C_d 为岩石产生的累计振铃计数; σ_m 为峰值应力, σ_n 为最大振铃计数C所对应的应力。

以往学者在建立损伤变量时要么仅考虑宏观 量[15],如考虑弹性模量、纵波波速以及伸长率等, 要么仅考虑细观量^[10-12],如考虑 AE 振铃计数,AE 累计能量数以及 AE 能量概率密度等。缺乏将二者 结合起来表征损伤变量的研究,从而无法实现损伤 变量的跨尺度定义。鉴于此,本文联立公式(5)与

应力-应变曲线

损伤变量

公式(6)定义总损伤变量Dm:

$$D_m = 1 - \frac{E_n}{E_0} \left[1 - \frac{C_d}{C} \left(1 - \frac{\sigma_n}{\sigma_m} \right) \right]$$
(7)

上式表明冻融岩石在受载时损伤呈非线性增 长。利用弹性模量与累积振铃计数耦合定义的损伤 变量,既定义了温度-水周期作用下岩石内部受冻 涨力孔隙增大和胶结物流失导致的损伤,又可以定 义岩石内部在加载条件下裂纹发育和扩展的时空 演化损伤。两种损伤相互影响,其耦合作用使总损 伤变量D_m微弱减小。

根据公式(7)可以得出贺兰口岩画载体材料砂 岩的损伤变量与应力变化的曲线如图9所示。

0.048

0.040

0.032

0.024

损伤变量

由图9可得,当损伤变量较小时,冻融作用对 岩样的损伤也较小,应变为0时,损伤变量最小值

为 0, 最大值为 0.1, 且其变化了 0.1。当损伤变量 一定时,随着循环次数的增加其对应应变值减小,

损伤变量为 0.1 时,循环 40 次对应的应变为 0,而 循环 0 次的最大损伤冻融变量只能达到 0.041,冻 融作用对岩样的损伤越来越明显。相同的冻融循环 次数下,岩样的损伤随着应变的增大而增加,且都 经历了平稳阶段与缓慢变化阶段以及后续陡然增 加的过程,该过程与应力-应变曲线变化规律相对 应。即在受载的初期,岩样内部的微裂隙及裂纹等 缺陷随着应变的增大而闭合,此阶段损伤值平稳, 损伤曲线趋于平行 x 轴。伴随着应变的增大,内部 裂纹逐渐闭合之后,岩样强度增大,损伤变量曲线 呈下凹。当应变达到一定程度时,岩样内部裂纹开 始稳定发育,此时损伤开始加速发育,损伤陡然增 加。从损伤变量曲线的三个阶段可以看出,基于冻 融循环过后的弹性模量和声发射振铃计数耦合的

200

损伤变量可以良好的反映贺兰山岩样的损伤演化 过程,公式(7)可以作为岩画损伤变量的表征公式。

3.3 损伤本构模型建立及验证

基于损伤变量的岩石应力-应变的本构关系表 示为:

$$\sigma = E\varepsilon(1 - D_m) \tag{8}$$

式中: E为弹性模量; E为轴向应变。

将公式(7)代入公式(8),得到贺兰山岩石 在单轴压缩试验下的损伤本构模型:

$$\sigma = E_n [1 - \frac{C_d}{C} (1 - \frac{\sigma_n}{\sigma_m})]\varepsilon$$
(9)

为验证该损伤本构模型的有效性,将应力的理论计算值与试验值进行比较,如图 10 所示。

由图 10 可知,理论结果与试验结果在趋势上 吻合较好,能够反映贺兰山岩画载体岩石强度变化 特征,进一步证明了该模型的有效性,该本构模型 可用于评估贺兰山岩画载体材料的损伤特性。

4 结 论

本文对冻融作用下的完整岩样测量质量、纵波 波速和有效孔隙率,之后进行单轴压缩和声发射试 验,通过分析每组试验后所得的数据结果,得出以 下结论:

(1)有效孔隙率和波速的变化能够反映岩石 表面损伤情况:当岩石出现颗粒剥落时,有效孔隙 率及波速降低比例均有所下降。当有效孔隙率与质 量损失率趋于一致,波速降低速率与冻融初期较为 接近。

(2) 基于冻融循环过后的弹性模量和声发射 振铃计数耦合的损伤变量可以较好地反映贺兰山 砂岩的损伤演化过程,损伤变量的变化经历了平稳 阶段、缓慢增加阶段和陡然上升阶段,与应力-应变 曲线变化规律一致。

(3) 实现了损伤变量的跨尺度定义, 建立的温度-水-力三场耦合作用下损伤本构模型, 可以描述 贺兰山岩石的损伤特性, 为贺兰山岩画病害机理的 认识提供模型参考。

参考文献

- 杨有贞,张晓霞,马汉林,等. 贺兰口岩画风化病害机 理[J]. 文物保护与考古科学, 2015, 27(增刊 1): 31-37. YANG You-zhen, ZHANG Xiao-xia, MA Han-lin, et al. Study on the weathering mechanism of Helankou rock art[J]. Sciences of Conservation and Archaeology, 2015, 27(S1): 31-37.
- [2] 杨有贞,金梦华,强文华,等.贺兰山岩画区岩石吸水
 特性试验研究[J]. 宁夏大学学报:自然科学版,2021,
 42(1):29-33.

YANG You-zhen, JIN Meng-hua, QIANG Wen-hua, et al. Experimental study on water absorption characteristics of rock in Helan mountain rock painting area[J]. Journal of Ningxia University : Natural Science Edition, 2021, 42(1): 29–33.

[3] 吕燃. 贺兰口岩画载体风化特征与机理研究[D]. 兰州: 兰州大学, 2020.

LV Ran. Weathering characteristics and mechanism study

on the carrier of rock paintings in Helankou[D]. Lanzhou: Lanzhou University, 2020.

- [4] MOMENI A, ABDILOR Y, KHANLARI G R, et al. The effect of freeze-thaw cycles on physical and mechanical properties of granitoid hard rocks[J]. Bulletin of Engineering Geology & the Environment, 2016, 75(4): 1– 8.
- [5] GHOBADI M H, BABAZADEH R. Experimental studies on the effect of cyclic freezing-thawing, salt crystallization, and thermal sandstone[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1001–1016.
- [6] 张慧梅,杨更社.冻融与荷载耦合作用下岩石损伤模型的研究[J].岩石力学与工程学报,2010,29(3):471-476.

ZHANG Hui-mei, YANG Geng-she. Research on damage model of rock under coupling action of freeze-thaw and load[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 471–476.

 [7] 贾海梁,刘清秉,项伟,等. 冻融循环作用下饱和砂岩 损伤扩展模型研究[J]. 岩石力学与工程学报, 2013, 32(增刊 2): 3049-3055.

JIA Hai-liang, LIU Qing-bing, XIANG Wei, et al. Damage evolution model of saturated sandstone under freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3049–3055.

- [8] 王天禹, 李斯涵, 夏晨皓, 等. 冻融循环作用下裂隙岩体 力学特性研究[J]. 化工矿物与加工, 2021, 50(10): 6-9.
 WANG Tian-yu, LI Si-han, XIA Chen-hao, et al. Study on dynamic property of fractured rocks under freeze-thaw cycles[J]. Industrial Minerals & Processing, 2021, 50(10): 6-9.
- [9] 李博文, 荣冠, 蒙世仟, 等. 冻融循环条件下玄武岩耐 久性研究[J]. 中国农村水利水电, 2021(10):116-121.
 LI Bo-wen, RONG Guan, MENG Shi-qian, et al. The durability of basalt under freeze-thaw cycles[J]. China Rural Water and Hydropower, 2021(10): 116-121.
- [10] 刘慧, 蔺江昊, 杨更社, 等. 冻融循环作用下砂岩受拉 损伤特性的声发射试验[J]. 采矿与安全工程学报, 2021, 38(4): 830-839.

LIU Hui, LIN Jiang-hao, YANG Geng-she, et al. Acoustic emission test on tensile damage characteristics of sandstone under freeze-thaw cycle[J]. Journal of Mining & Safety Engineering, 2021, 38(4): 830–839.